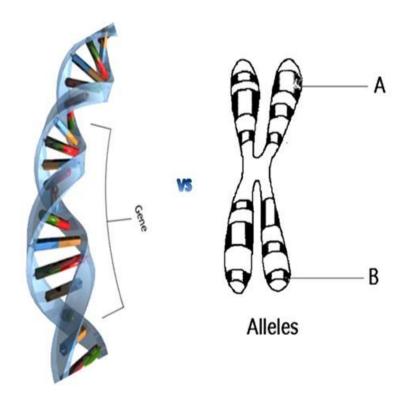
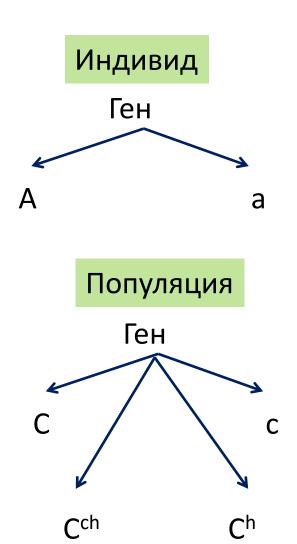
Оренбургский государственный медицинский университет Кафедра Биологии Дисциплина Биология


Лекция № 11.

Множественные аллели. Иммуногенетика: ABO, Rh, HLA системы.

Доцент кафедры биологии, к.б.н. Тихомирова Галина Михайловна

Генотип — это система взаимодействующих аллелей, характерных для данного индивидуума. Генотип, характеризует особь. В более узком смысле под генотипом понимают комбинацию аллелей гена или локуса у конкретного организма.


Процесс определения генотипа называется генотипированием.

Множественные аллели

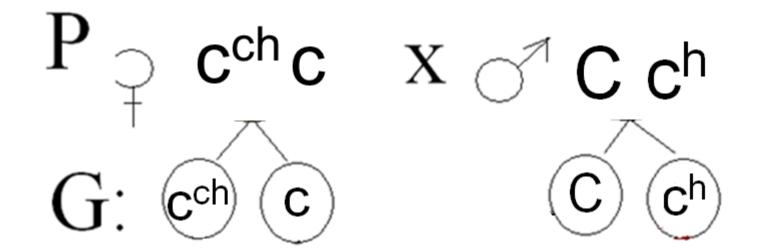
аллели, которые представлены в популяции более чем двумя аллельными состояниями.

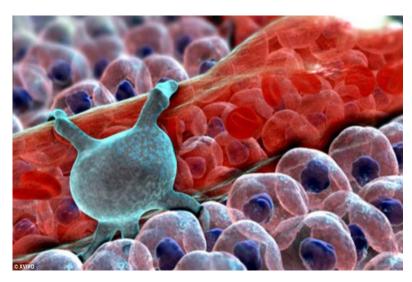
- Множественные аллели характеризуют разнообразие генофонда вида.
- Это видовой признак, а не индивидуальный.
- Они возникают в результате многократного мутирования одного и того же локуса хромосомы.
- Помимо доминантного и рецессивного генов появляются еще и промежуточные аллели, которые по отношению к доминантному ведут себя как рецессивные, а по отношению к рецессивному, как доминантные.

Множественные аллели.

Пример: окрас шерсти у кроликов

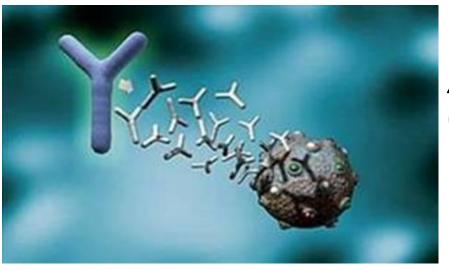
Признак	ген	Генотип	Генотипы 2
Сплошная черная окраска	С	CC, Cc	Cc ^{ch} , Cc ^h
Шиншилловая (сплошная серая)	C ^{ch}	C ^{ch} C ^{ch}	c ^{ch} c ^h , c ^{ch} c
Гималайская (белые, а кончики ушей, хвоста, носа, ног окрашенные)	C ^h	C ^h C ^h	c ^h c
Белые	С	СС	



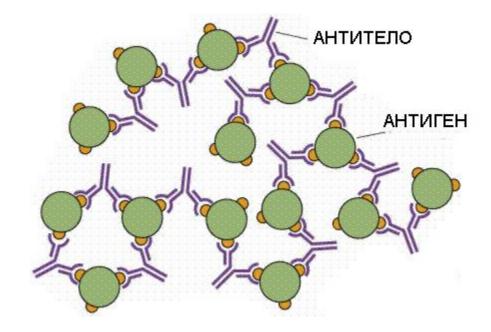

 $\begin{array}{c|cccc} F_1 & & & & & \\ & & c^{ch} & c & \\ \hline C & Cc^{ch} & Cc & \\ \hline c^h & C^{ch}c^h & c^hc & \\ \end{array}$

Иммуногенетика. Наследование группы крови по системе ABO.

Иммуногенетика


комплексная научная дисциплина, сочетающая методы иммунологии, молекулярной биологии и генетики для изучения наследственных факторов иммунитета, внутривидового разнообразия и наследования тканевых антигенов.

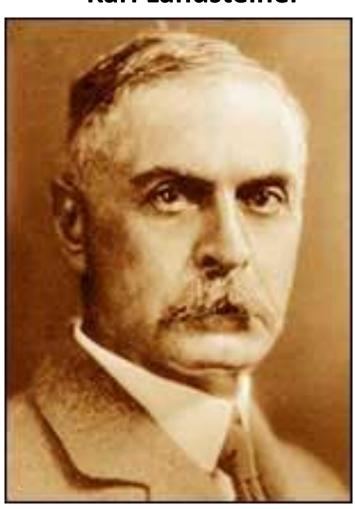
Наука иммуногенетика, основные направления


- 1. генетики<u>гистосовместимости</u>;
- 2. генетического контроля структуры <u>иммуноглобулинов</u> и других иммунологически значимых молекул;
- 3. генетического контроля силы иммунного реагирования;
- 4. генетики <u>антигенов</u>

Понятия иммуногенетики

Антигены (агглютиногены) - чужеродные высокомолекулярные вещества, которые при введении в организм животных и человека вызывают образование специфически реагирующих с ними веществ называемых **антитела**.

Антитела (агглютинины)
– это белки относящиеся к классу γ- глобулинов содержащиеся в крови и других биологических жидкостях позвоночных животных. Синтезируются В-лимфоцитами.

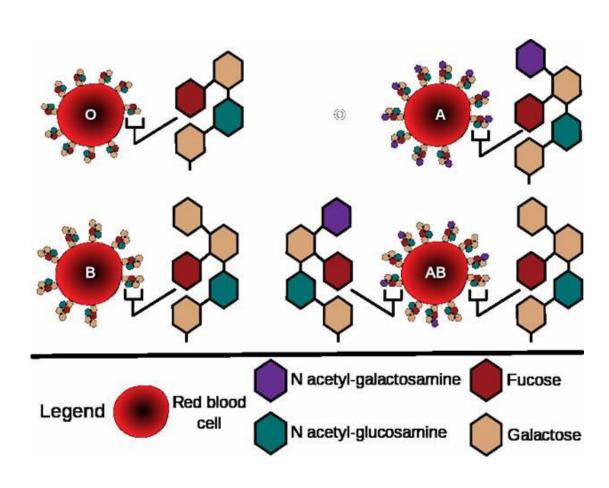

Для любой иммунологической системы характерно наличие

- Генов, расположенных в хромосомах и кодирующих синтез белков.
- Данные белки, способствуют формированию **антигеном** (белково-углеводные комплексы), которые обнаруживаются *в мембранах клеток*.
- В ответ на «чужеродны» антиген (не свойственный и не встречающийся в данном организме) активируется синтез антител, которые обнаруживаются в плазме крови

Имунологическая система АВО система

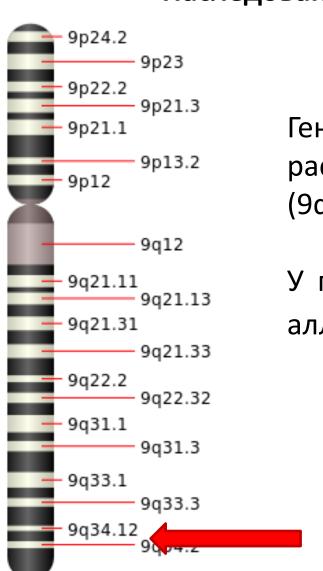
Karl Landsteiner

В 1900 году, австрийским ученым Карлом Ландштайнером была обнаружена и описана иммунологическая система группы крови АВО.


Генетическое основание системы группы крови ABO - множественного аллелизма.

Он описал четыре группы крови, за что в 1930 г. ему была присуждена Нобелевская премия.

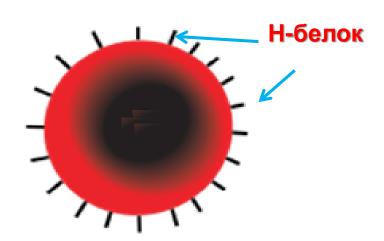
Наследование группы крови по системе АВО

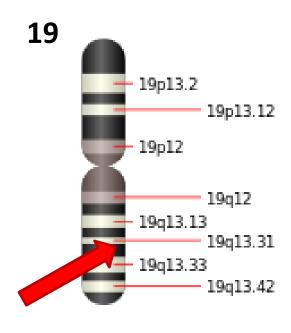

Эритроцит покрыт плазмалеммой толщиной около 7 нм, в которую встроены антигены системы ABO.

В плазме крови каждого человека имеются антитела прот ив антигенов эритроцитов, которые не содержатся в его собственной крови.

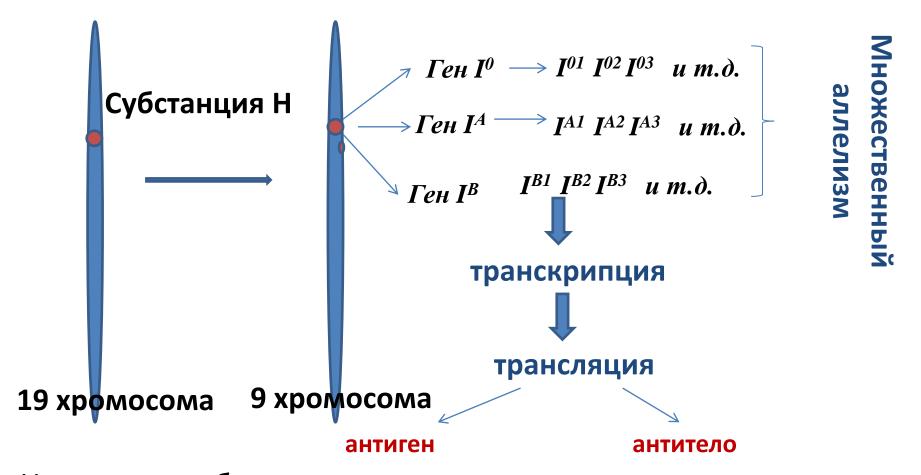
!!!! Врожденные антитела характерны только для антигенной системы АВО.

Наследование группы крови по системе АВО

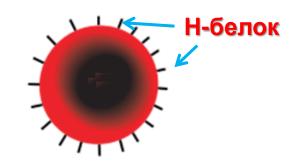

Ген группы крови по системе ABO расположен в длинном плече **9 хромосомы** (9q34).

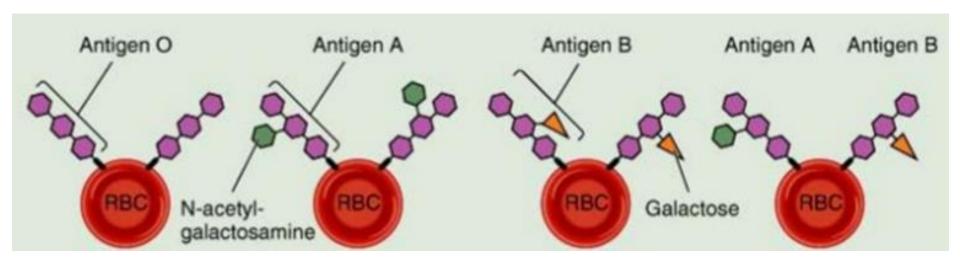

У гена группы крови ABO есть минимум 3 аллели: I^A , I^B , i (I^O).

9 chromosome


- Аллели (9 хромосомы) управляют синтезом ферментов, которые катализируют соединение специфических углеводных остатков с определенным белком (*Н белок*) в мембранах эритроцитов.
- Углеводный компонент с белком называется АНТИГЕН

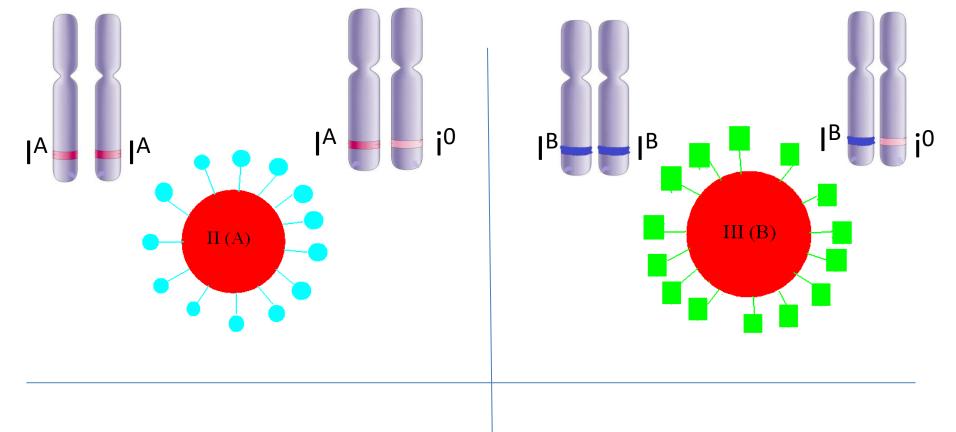
Структура Н белка закодирована в **хромосоме** (19q13.2)

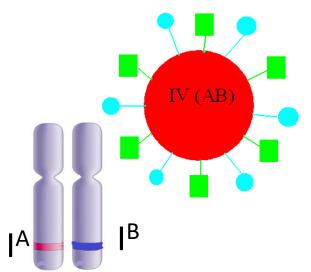


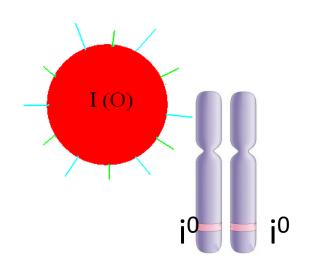

Наследование группы крови по системе АВО

Изначально общим предшественником всех антигенов является *субственция* **H** (19 хромосоме). В локусе 9 хромосомы имеется ген, который определяет развитие *антигенов* **A** *u* **B**. К субстанциям **H** и **O** антител нет.

- ➤ Аллель I^A продуцирует антиген A
- ▶ Аллель I^B антиген В
- ➤ Аллель i⁰ не дает антигена

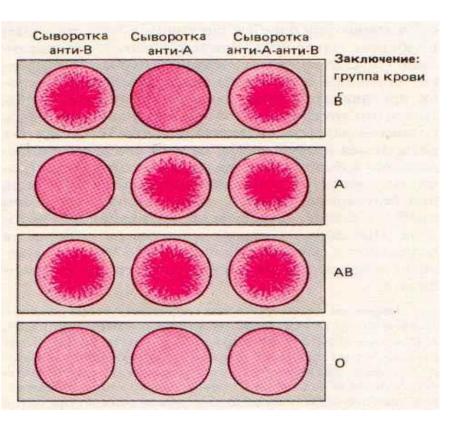

	Group A	Group B	Group AB	Group O
Red blood cell type	A	В	AB	
Antibodies present	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens present	P A antigen	† B antigen	P† A and B antigens	No antigens


ı



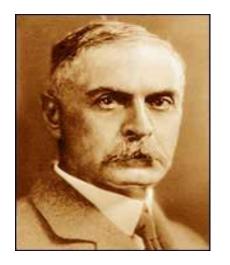
Наследование групп крови по системе АВО

Группа крови	Фенотип		Гены в локусе 9	Генотипы	
	Антигены В мембране эритроцитов	Антитела В плазме крови	хромосомы		
I (0)	-	α, β	I 0	I ₀ I ₀	
II (A)	A	β	I ^A	IAIA, IAI ⁰ полное доминирование	
III (B)	В	α	I^B	I^BI^B , I^BI^0	
IV(AB)	A B	-	I^A , I^B	І А І В кодоминиров <u>а</u> ние	



Геногеография

Группа	Распространенность
крови	
I (0)	Новый свет (Южная и северная Америки)
II (A)	Европа и Австралия
III (B)	Азия
IV(AB)	5% всего населения

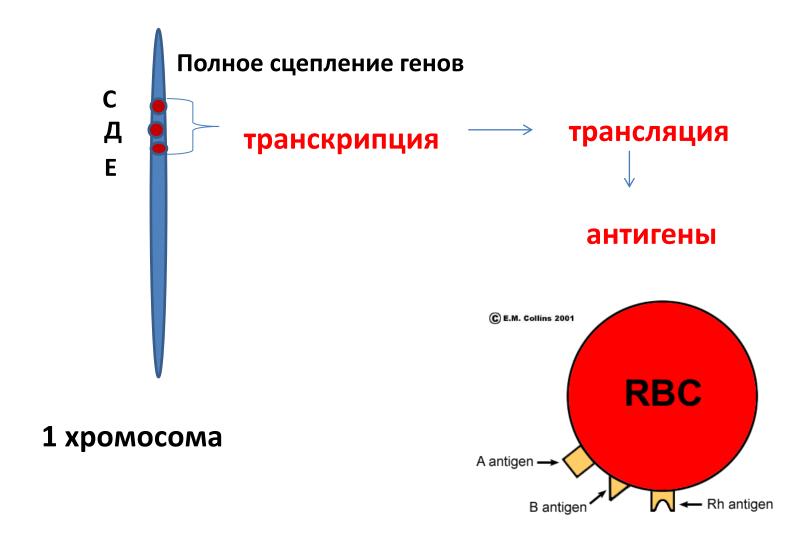

Значение групп крови по системе АВО

!!!!Врожденные антитела характерны только для антигенной системы ABO.

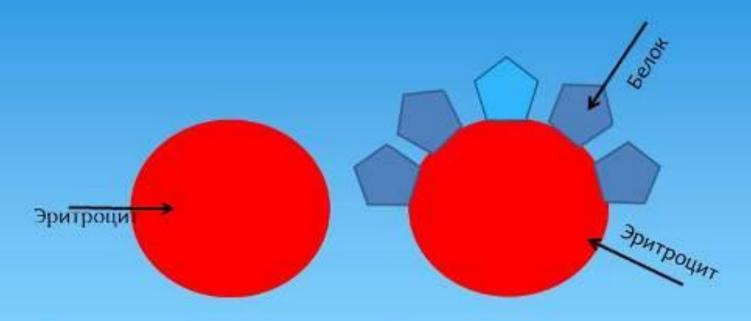
- При переливании группы крови (из группы в группу).
- Установление зиготности близнецов.
- Для картирования хромосом и установления групп сцепления
- Установлены ассоциации антигенов системы ABO с различными инфекционными и неинфекционными заболеваниями (маркеры заболеваний).
- Конфликт по системе AB0.
- В судебно-медицинской экспертизе (установление отцовства и т.д.)

Иммуногенетика. Наследование резус фактора.

Karl Landsteiner 1868-1943


Alexander S. Wiener
1907–1976

Наследование Rh-фактора



- Ученые открывшие систему
- К. Ландштайнер и А. Винер.
- Система Rh-фактора названа в честь макак-резус, на эритроцитах которых впервые были обнаружены антигены.

Наследование Rh-фактора

Отрицательный резус-фактор

Положительный резус-фактор

Понятие Rh – фактор, и его наследование

Rh -фактор	Гены	Генотипы	Фенотип	
			антигены	антитела
Rh - фактор положительный	C, D, E	C_D_E_	СДЕ	-
Rh - фактор положительный	C, D, e	C_D_ee	СД	-
Rh - фактор положительный	c, D, E	ccD_E_	ДЕ	-
Rh - фактор положительный	c, D, e	ccD_ee	Д	-
Rh - фактор «прима»	C, d, e	C_ddee	C	-
Rh – фактор «прима»	c,d,E	ccddE_	E	-
Rh – фактор «секунда»	C,d,E	C_ddE_	C,E	-
Rh - фактор отрицательный	c,d,e	ccddee	-	- 26

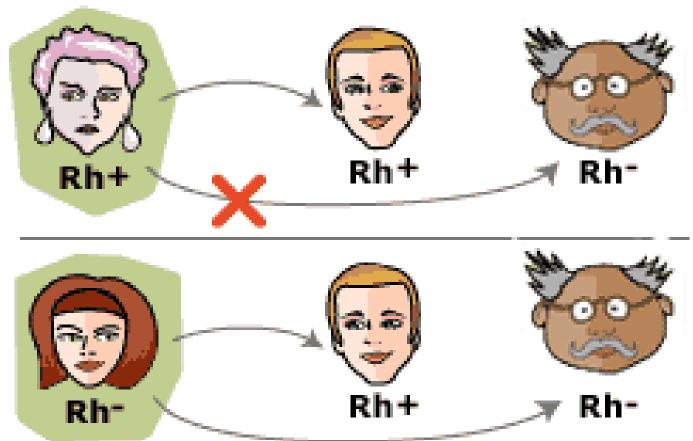
Распределение резус — фактора в человеческой популяции

• Европейская раса

```
84% - резус-положительных людей;
```

16% - резус-отрицательных людей;

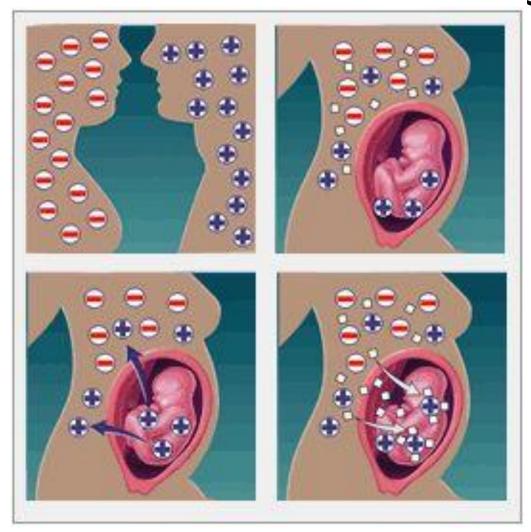
• Негроидная раса


```
16% - резус-положительных людей;
```

84% - резус-отрицательных людей;

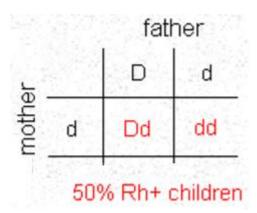
• Монголоидная раса:

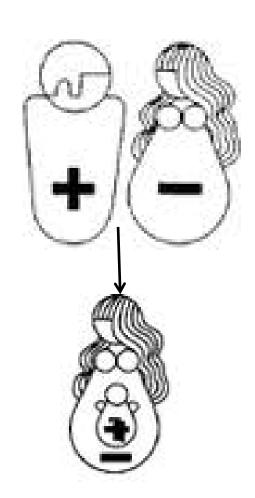
```
около 99% - резус-положительных людей; около 1% - резус-отрицательных людей;
```


Значение Rh-фактора

1. Переливание крови

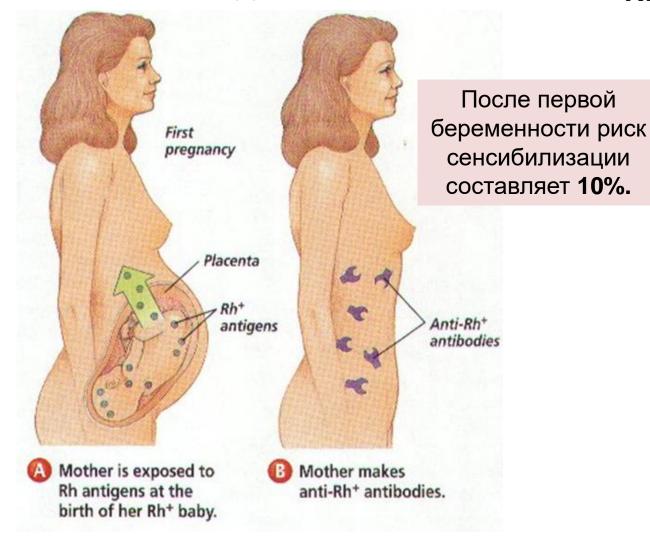
Резус-положительную кровь нельзя переливают резусотрицательному человеку, т.к. вырабатываются антитела, называемые анти-Rh агглютинины, происходит агглютинация. В конечном итоге происходит разрушение клеток (гемолиз).


Значение Rh-фактора



2. Резус-конфликт между матерью и плодом.

Резус-конфликт. Гемолитическая болезнь плода и новорожденного


		father		
		D	D	
Jer	d	Dd	Dd	
mother	d	Dd	Dd	
100% Rh+ children				

Первая беременность **Rh+ плодом**

Вторая беременность **Rh+ плодом**

Possible subsequent pregnancies

During the mother's next

pregnancy, Rh antibodies

can cross the placenta and

endanger the fetus.

Гемолитическая болезнь новорожденного

В результате несовместимости возникает эритробластоз плода.

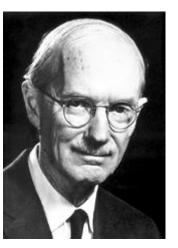
Симптомы и признаки гемолитической болезни у новорожденных:

- Анемия, что создает бледность новорожденного).
- Желтуха или пожелтение кожи новорожденного или склеры. Это вызвано наличием билирубина (один из конечных продуктов разрушения эритроцитов).
- Расширение печени новорожденного и селезенки.
- Одышка или затрудненное дыхание.

Значение Rh-фактора

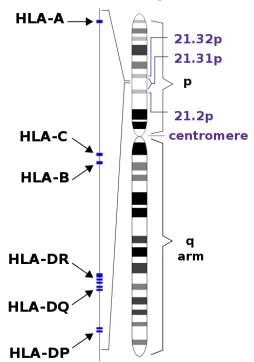
3. Судебной экспертизе.

Иммуногенетика. Наследование системы HLA.


Система HLA (человеческий лейкоцитарный антиген)

Jean Dausset 1916-2009

Baruj Benacerraf 1920-2011

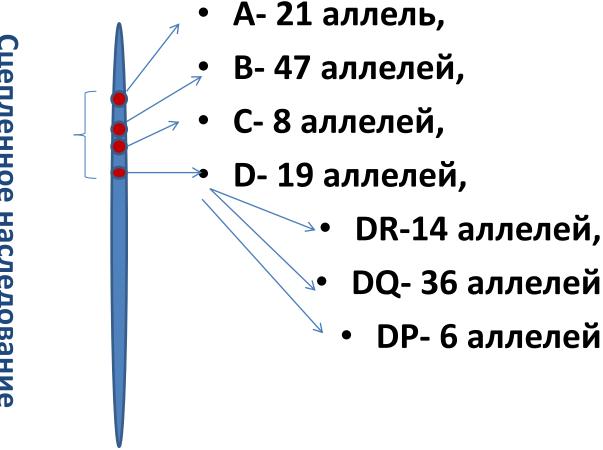

George Davis Snell 1903-1996

Ученые открывшие систему

 На поверхности лейкоцитов были обнаружены специальные антигены.

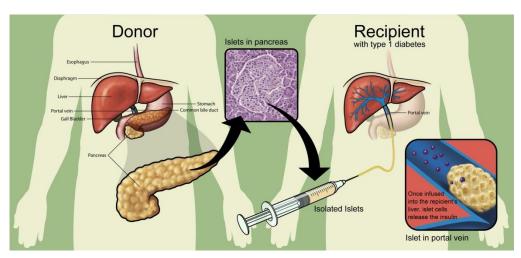
Система гистосовместимости человека HLA – человеческие лейкоцитарные антигены

HLA MHC Complex

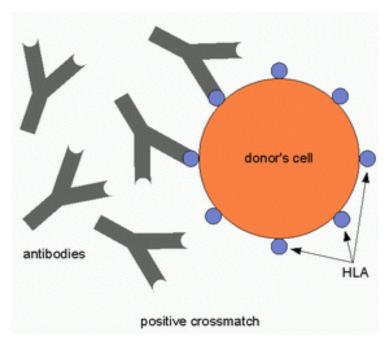


human chromosome 6

- Гены в 6 хромосоме: 4 локуса (А, В, С,D) и 4 сублокуса D.
- Антигены в мембране всех ядросодержащих клеток
- более 100 белков
- Антитела в сыворотке крови


Сцепленное наследование

Система гистосовместимости (система HLA)



6 хромосома

Значение HLA системы

1. Трансплантация органов и тканей: определяет совместимость доноров для пересадки органов.

Значение HLA системы

2. Маркеры HLA

- Антигены, отвечающие за достоверное снижение степени риска, за относительную устойчивость к болезни назвали антигенами «протекторами»,
- антигены, увеличивающие риск заболевания антигены — провокаторы.

ДУМА О ГЕНЕТИКЕ.

Какие сами мы, природа все учтет. И в гены нам запишет очень четко. Тот не от старости, увы, умрет, Его погубит, к сожаленью, водка.

Тот был лентяй, а тот творец, Разбойник был того отец. Все видела природа - мать, Стремясь на генах записать.

Спасибо за внимание!